
COP 4710: Database Systems  (Chapter 5)              Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2008

Chapter 5 – Introduction To SQL – Part 1

COP 4710: Database Systems
Spring 2008

Chapter 5 – Introduction To SQL – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2008



COP 4710: Database Systems  (Chapter 5)              Page 2 Mark Llewellyn

The Physical Design Stage of SDLC 

Purpose –programming, testing, 
training, installation, documenting
Deliverable – operational programs, 
documentation, training materials, 
program/data structures

Database activity –
physical database design and
database implementation

Project Identification
and Selection

Project Initiation
and Planning

Analysis

Physical Design

Implementation

Maintenance

Logical Design

Implementation

Physical Design
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SQL Overview

• SQL ≡ Structured Query Language.
• The standard for relational database management 

systems (RDBMS).
• SQL-99 and SQL: 2003 Standards – Purpose:

– Specify syntax/semantics for data definition and 
manipulation.

– Define data structures.
– Enable portability.
– Specify minimal (level 1) and complete (level 2) standards.
– Allow for later growth/enhancement to standard.
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Benefits of a Standardized Relational 
Language

• Reduced training costs
• Productivity
• Application portability
• Application longevity
• Reduced dependence on a single vendor
• Cross-system communication
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The SQL Environment
• Catalog

– A set of schemas that constitute the description of a database.
• Schema

– The structure that contains descriptions of objects created by a
user (base tables, views, constraints).

• Data Definition Language (DDL)
– Commands that define a database, including creating, altering, 

and dropping tables and establishing constraints.
• Data Manipulation Language (DML)

– Commands that maintain and query a database.
• Data Control Language (DCL)

– Commands that control a database, including administering 
privileges and committing data.
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A simplified schematic of a typical SQL environment, as described 
by the SQL:2003 standard

Developmental 
database

Production 
database
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Some SQL Data Types (from Oracle 9i)

• String types
– CHAR(n) – fixed-length character data, n characters long 

Maximum length = 2000 bytes
– VARCHAR2(n) – variable length character data, maximum 4000 

bytes
– LONG – variable-length character data, up to 4GB. Maximum 1 

per table

• Numeric types
– NUMBER(p,q) – general purpose numeric data type
– INTEGER(p) – signed integer, p digits wide
– FLOAT(p) – floating point in scientific notation with p binary 

digits precision

• Date/time type
– DATE – fixed-length date/time in dd-mm-yy form
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DDL, DML, DCL, and the database development process
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SQL Database Definition

• Data Definition Language (DDL)
• Major CREATE statements:

– CREATE SCHEMA – defines a portion of the database 
owned by a particular user.

– CREATE TABLE – defines a table and its columns.
– CREATE VIEW – defines a logical table from one or 

more views.

• Other CREATE statements: CHARACTER SET, 
COLLATION, TRANSLATION, ASSERTION, 
DOMAIN.
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Table Creation

General syntax for CREATE TABLE

Steps in table creation:

1. Identify data types for 
attributes

2. Identify columns that can 
and cannot be null

3. Identify columns that must 
be unique (candidate keys)

4. Identify primary key-
foreign key mates

5. Determine default values

6. Identify constraints on 
columns (domain 
specifications)

7. Create the table and 
associated indexes
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Examples of SQL database definition commands
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Defining attributes and their data types

Domain 
constraint
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Non-null specification

Identifying primary key
Primary keys 
can never have 
NULL values
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Non-null specifications

Primary key

Some primary keys are composite –
composed of multiple attributes
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Default value

Domain constraint

Controlling the values in attributes
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Primary key of  
parent table

Identifying foreign keys and establishing relationships

Foreign key of  
dependent table
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Data Integrity Controls

• Referential integrity – constraint that ensures 
that foreign key values of a table must match 
primary key values of a related table in 1:M 
relationships.

• Restricting:
– Deletes of primary records.
– Updates of primary records.
– Inserts of dependent records.
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Relational 
integrity is 
enforced via 
the primary-
key to foreign-
key match
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Changing and Removing Tables

• ALTER TABLE statement allows you to 
change column specifications:
– ALTER TABLE CUSTOMER_T ADD (TYPE 

VARCHAR(2))
• DROP TABLE statement allows you to 

remove tables from your schema:
– DROP TABLE CUSTOMER_T
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Schema Definition
• Control processing/storage efficiency:

– Choice of indexes
– File organizations for base tables
– File organizations for indexes
– Data clustering
– Statistics maintenance

• Creating indexes
– Speed up random/sequential access to base table data
– Example

• CREATE INDEX NAME_IDX ON 
CUSTOMER_T(CUSTOMER_NAME)

• This makes an index for the CUSTOMER_NAME field of the 
CUSTOMER_T table
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Insert Statement
• Adds data to a table
• Inserting into a table

– INSERT INTO CUSTOMER_T VALUES (001, 
‘Contemporary Casuals’, 1355 S. Himes Blvd.’, ‘Gainesville’, 
‘FL’, 32601);

• Inserting a record that has some null attributes requires 
identifying the fields that actually get data
– INSERT INTO PRODUCT_T (PRODUCT_ID, 

PRODUCT_DESCRIPTION,PRODUCT_FINISH, STANDARD_PRICE, 
PRODUCT_ON_HAND) VALUES (1, ‘End Table’, ‘Cherry’, 175, 8);

• Inserting from another table
– INSERT INTO CA_CUSTOMER_T SELECT * FROM CUSTOMER_T 

WHERE STATE = ‘CA’;
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Delete Statement

• Removes rows from a table.
• Delete certain rows

– DELETE FROM CUSTOMER_T WHERE 
STATE = ‘HI’;

• Delete all rows
– DELETE FROM CUSTOMER_T;
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Update Statement

• Modifies data in existing rows

• UPDATE PRODUCT_T SET UNIT_PRICE = 775 
WHERE PRODUCT_ID = 7;
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SELECT Statement
• Used for queries on single or multiple tables.
• Clauses of the SELECT statement:

– SELECT
• List the columns (and expressions) that should be returned from the query

– FROM
• Indicate the table(s) or view(s) from which data will be obtained

– WHERE
• Indicate the conditions under which a row will be included in the result

– GROUP BY
• Indicate categorization of results 

– HAVING
• Indicate the conditions under which a category (group) will be included

– ORDER BY
• Sorts the result according to specified criteria
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SQL statement 
processing order



COP 4710: Database Systems  (Chapter 5)              Page 26 Mark Llewellyn

SELECT Example

• Find products with standard price less than $275

SELECT PRODUCT_NAME, STANDARD_PRICE 
FROM PRODUCT_V 
WHERE STANDARD_PRICE < 275;
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SELECT Example using Alias

• Alias is an alternative column or table name.

SELECT CUST.CUSTOMER AS NAME, 
CUST.CUSTOMER_ADDRESS 

FROM CUSTOMER_V CUST
WHERE NAME = ‘Home Furnishings’;
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SELECT Example Using a Function

• Using the COUNT aggregate function to find 
totals

SELECT COUNT(*) FROM ORDER_LINE_V
WHERE ORDER_ID = 1004;

Note: with aggregate functions you can’t have single-
valued columns included in the SELECT clause
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SELECT Example – Boolean Operators
• AND, OR, and NOT Operators for customizing 

conditions in WHERE clause

SELECT PRODUCT_DESCRIPTION, PRODUCT_FINISH, 
STANDARD_PRICE

FROM PRODUCT_V
WHERE (PRODUCT_DESCRIPTION LIKE ‘%Desk’
OR PRODUCT_DESCRIPTION LIKE ‘%Table’) 
AND UNIT_PRICE > 300;

Note: the LIKE operator allows you to compare strings using wildcards. For 
example, the % wildcard in ‘%Desk’ indicates that all strings that have any 
number of characters preceding the word “Desk” will be allowed
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SELECT Example –
Sorting Results with the ORDER BY Clause

• Sort the results first by STATE, and within a state 
by CUSTOMER_NAME

SELECT CUSTOMER_NAME, CITY, STATE
FROM CUSTOMER_V
WHERE STATE IN (‘FL’, ‘TX’, ‘CA’, ‘HI’)
ORDER BY STATE, CUSTOMER_NAME;

Note: the IN operator in this example allows you to include rows whose 
STATE value is either FL, TX, CA, or HI. It is more efficient than separate 
OR conditions
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SELECT Example –
Categorizing Results Using the GROUP BY Clause
• For use with aggregate functions

– Scalar aggregate: single value returned from SQL query with aggregate 
function

– Vector aggregate: multiple values returned from SQL query with 
aggregate function (via GROUP BY)

SELECT STATE, COUNT(STATE) 
FROM CUSTOMER_V
GROUP BY STATE;

Note: you can use single-value fields with aggregate functions 
if they are included in the GROUP BY clause.
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SELECT Example –
Qualifying Results by Category Using the HAVING Clause

• For use with GROUP BY

SELECT STATE, COUNT(STATE) 
FROM CUSTOMER_V
GROUP BY STATE
HAVING COUNT(STATE) > 1;

Like a WHERE clause, but it operates on groups (categories), not on 
individual rows. Here, only those groups with total numbers greater than 
1 will be included in final result


