
COP 4710: Database Systems (Chapter 5) Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2008

Chapter 5 – Introduction To SQL – Part 1

COP 4710: Database Systems
Spring 2008

Chapter 5 – Introduction To SQL – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2008

COP 4710: Database Systems (Chapter 5) Page 2 Mark Llewellyn

The Physical Design Stage of SDLC

Purpose –programming, testing,
training, installation, documenting
Deliverable – operational programs,
documentation, training materials,
program/data structures

Database activity –
physical database design and
database implementation

Project Identification
and Selection

Project Initiation
and Planning

Analysis

Physical Design

Implementation

Maintenance

Logical Design

Implementation

Physical Design

COP 4710: Database Systems (Chapter 5) Page 3 Mark Llewellyn

SQL Overview

• SQL ≡ Structured Query Language.
• The standard for relational database management

systems (RDBMS).
• SQL-99 and SQL: 2003 Standards – Purpose:

– Specify syntax/semantics for data definition and
manipulation.

– Define data structures.
– Enable portability.
– Specify minimal (level 1) and complete (level 2) standards.
– Allow for later growth/enhancement to standard.

COP 4710: Database Systems (Chapter 5) Page 4 Mark Llewellyn

Benefits of a Standardized Relational
Language

• Reduced training costs
• Productivity
• Application portability
• Application longevity
• Reduced dependence on a single vendor
• Cross-system communication

COP 4710: Database Systems (Chapter 5) Page 5 Mark Llewellyn

The SQL Environment
• Catalog

– A set of schemas that constitute the description of a database.
• Schema

– The structure that contains descriptions of objects created by a
user (base tables, views, constraints).

• Data Definition Language (DDL)
– Commands that define a database, including creating, altering,

and dropping tables and establishing constraints.
• Data Manipulation Language (DML)

– Commands that maintain and query a database.
• Data Control Language (DCL)

– Commands that control a database, including administering
privileges and committing data.

COP 4710: Database Systems (Chapter 5) Page 6 Mark Llewellyn

A simplified schematic of a typical SQL environment, as described
by the SQL:2003 standard

Developmental
database

Production
database

COP 4710: Database Systems (Chapter 5) Page 7 Mark Llewellyn

Some SQL Data Types (from Oracle 9i)

• String types
– CHAR(n) – fixed-length character data, n characters long

Maximum length = 2000 bytes
– VARCHAR2(n) – variable length character data, maximum 4000

bytes
– LONG – variable-length character data, up to 4GB. Maximum 1

per table

• Numeric types
– NUMBER(p,q) – general purpose numeric data type
– INTEGER(p) – signed integer, p digits wide
– FLOAT(p) – floating point in scientific notation with p binary

digits precision

• Date/time type
– DATE – fixed-length date/time in dd-mm-yy form

COP 4710: Database Systems (Chapter 5) Page 8 Mark Llewellyn

DDL, DML, DCL, and the database development process

COP 4710: Database Systems (Chapter 5) Page 9 Mark Llewellyn

SQL Database Definition

• Data Definition Language (DDL)
• Major CREATE statements:

– CREATE SCHEMA – defines a portion of the database
owned by a particular user.

– CREATE TABLE – defines a table and its columns.
– CREATE VIEW – defines a logical table from one or

more views.

• Other CREATE statements: CHARACTER SET,
COLLATION, TRANSLATION, ASSERTION,
DOMAIN.

COP 4710: Database Systems (Chapter 5) Page 10 Mark Llewellyn

Table Creation

General syntax for CREATE TABLE

Steps in table creation:

1. Identify data types for
attributes

2. Identify columns that can
and cannot be null

3. Identify columns that must
be unique (candidate keys)

4. Identify primary key-
foreign key mates

5. Determine default values

6. Identify constraints on
columns (domain
specifications)

7. Create the table and
associated indexes

COP 4710: Database Systems (Chapter 5) Page 11 Mark Llewellyn

Examples of SQL database definition commands

COP 4710: Database Systems (Chapter 5) Page 12 Mark Llewellyn

Defining attributes and their data types

Domain
constraint

COP 4710: Database Systems (Chapter 5) Page 13 Mark Llewellyn

Non-null specification

Identifying primary key
Primary keys
can never have
NULL values

COP 4710: Database Systems (Chapter 5) Page 14 Mark Llewellyn

Non-null specifications

Primary key

Some primary keys are composite –
composed of multiple attributes

COP 4710: Database Systems (Chapter 5) Page 15 Mark Llewellyn

Default value

Domain constraint

Controlling the values in attributes

COP 4710: Database Systems (Chapter 5) Page 16 Mark Llewellyn

Primary key of
parent table

Identifying foreign keys and establishing relationships

Foreign key of
dependent table

COP 4710: Database Systems (Chapter 5) Page 17 Mark Llewellyn

Data Integrity Controls

• Referential integrity – constraint that ensures
that foreign key values of a table must match
primary key values of a related table in 1:M
relationships.

• Restricting:
– Deletes of primary records.
– Updates of primary records.
– Inserts of dependent records.

COP 4710: Database Systems (Chapter 5) Page 18 Mark Llewellyn

Relational
integrity is
enforced via
the primary-
key to foreign-
key match

COP 4710: Database Systems (Chapter 5) Page 19 Mark Llewellyn

Changing and Removing Tables

• ALTER TABLE statement allows you to
change column specifications:
– ALTER TABLE CUSTOMER_T ADD (TYPE

VARCHAR(2))
• DROP TABLE statement allows you to

remove tables from your schema:
– DROP TABLE CUSTOMER_T

COP 4710: Database Systems (Chapter 5) Page 20 Mark Llewellyn

Schema Definition
• Control processing/storage efficiency:

– Choice of indexes
– File organizations for base tables
– File organizations for indexes
– Data clustering
– Statistics maintenance

• Creating indexes
– Speed up random/sequential access to base table data
– Example

• CREATE INDEX NAME_IDX ON
CUSTOMER_T(CUSTOMER_NAME)

• This makes an index for the CUSTOMER_NAME field of the
CUSTOMER_T table

COP 4710: Database Systems (Chapter 5) Page 21 Mark Llewellyn

Insert Statement
• Adds data to a table
• Inserting into a table

– INSERT INTO CUSTOMER_T VALUES (001,
‘Contemporary Casuals’, 1355 S. Himes Blvd.’, ‘Gainesville’,
‘FL’, 32601);

• Inserting a record that has some null attributes requires
identifying the fields that actually get data
– INSERT INTO PRODUCT_T (PRODUCT_ID,

PRODUCT_DESCRIPTION,PRODUCT_FINISH, STANDARD_PRICE,
PRODUCT_ON_HAND) VALUES (1, ‘End Table’, ‘Cherry’, 175, 8);

• Inserting from another table
– INSERT INTO CA_CUSTOMER_T SELECT * FROM CUSTOMER_T

WHERE STATE = ‘CA’;

COP 4710: Database Systems (Chapter 5) Page 22 Mark Llewellyn

Delete Statement

• Removes rows from a table.
• Delete certain rows

– DELETE FROM CUSTOMER_T WHERE
STATE = ‘HI’;

• Delete all rows
– DELETE FROM CUSTOMER_T;

COP 4710: Database Systems (Chapter 5) Page 23 Mark Llewellyn

Update Statement

• Modifies data in existing rows

• UPDATE PRODUCT_T SET UNIT_PRICE = 775
WHERE PRODUCT_ID = 7;

COP 4710: Database Systems (Chapter 5) Page 24 Mark Llewellyn

SELECT Statement
• Used for queries on single or multiple tables.
• Clauses of the SELECT statement:

– SELECT
• List the columns (and expressions) that should be returned from the query

– FROM
• Indicate the table(s) or view(s) from which data will be obtained

– WHERE
• Indicate the conditions under which a row will be included in the result

– GROUP BY
• Indicate categorization of results

– HAVING
• Indicate the conditions under which a category (group) will be included

– ORDER BY
• Sorts the result according to specified criteria

COP 4710: Database Systems (Chapter 5) Page 25 Mark Llewellyn

SQL statement
processing order

COP 4710: Database Systems (Chapter 5) Page 26 Mark Llewellyn

SELECT Example

• Find products with standard price less than $275

SELECT PRODUCT_NAME, STANDARD_PRICE
FROM PRODUCT_V
WHERE STANDARD_PRICE < 275;

COP 4710: Database Systems (Chapter 5) Page 27 Mark Llewellyn

SELECT Example using Alias

• Alias is an alternative column or table name.

SELECT CUST.CUSTOMER AS NAME,
CUST.CUSTOMER_ADDRESS

FROM CUSTOMER_V CUST
WHERE NAME = ‘Home Furnishings’;

COP 4710: Database Systems (Chapter 5) Page 28 Mark Llewellyn

SELECT Example Using a Function

• Using the COUNT aggregate function to find
totals

SELECT COUNT(*) FROM ORDER_LINE_V
WHERE ORDER_ID = 1004;

Note: with aggregate functions you can’t have single-
valued columns included in the SELECT clause

COP 4710: Database Systems (Chapter 5) Page 29 Mark Llewellyn

SELECT Example – Boolean Operators
• AND, OR, and NOT Operators for customizing

conditions in WHERE clause

SELECT PRODUCT_DESCRIPTION, PRODUCT_FINISH,
STANDARD_PRICE

FROM PRODUCT_V
WHERE (PRODUCT_DESCRIPTION LIKE ‘%Desk’
OR PRODUCT_DESCRIPTION LIKE ‘%Table’)
AND UNIT_PRICE > 300;

Note: the LIKE operator allows you to compare strings using wildcards. For
example, the % wildcard in ‘%Desk’ indicates that all strings that have any
number of characters preceding the word “Desk” will be allowed

COP 4710: Database Systems (Chapter 5) Page 30 Mark Llewellyn

SELECT Example –
Sorting Results with the ORDER BY Clause

• Sort the results first by STATE, and within a state
by CUSTOMER_NAME

SELECT CUSTOMER_NAME, CITY, STATE
FROM CUSTOMER_V
WHERE STATE IN (‘FL’, ‘TX’, ‘CA’, ‘HI’)
ORDER BY STATE, CUSTOMER_NAME;

Note: the IN operator in this example allows you to include rows whose
STATE value is either FL, TX, CA, or HI. It is more efficient than separate
OR conditions

COP 4710: Database Systems (Chapter 5) Page 31 Mark Llewellyn

SELECT Example –
Categorizing Results Using the GROUP BY Clause
• For use with aggregate functions

– Scalar aggregate: single value returned from SQL query with aggregate
function

– Vector aggregate: multiple values returned from SQL query with
aggregate function (via GROUP BY)

SELECT STATE, COUNT(STATE)
FROM CUSTOMER_V
GROUP BY STATE;

Note: you can use single-value fields with aggregate functions
if they are included in the GROUP BY clause.

COP 4710: Database Systems (Chapter 5) Page 32 Mark Llewellyn

SELECT Example –
Qualifying Results by Category Using the HAVING Clause

• For use with GROUP BY

SELECT STATE, COUNT(STATE)
FROM CUSTOMER_V
GROUP BY STATE
HAVING COUNT(STATE) > 1;

Like a WHERE clause, but it operates on groups (categories), not on
individual rows. Here, only those groups with total numbers greater than
1 will be included in final result

